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We extend a previous analysis of spatial correlation functions for classical electromagnetic vector fields near
a perfectly conducting boundary �Arnaut, Phys. Rev. E, 73, 036604 �2006�� to the case of an isotropic
semi-infinite medium with planar interface and characterized by a first-order impedance boundary condition.
The analytical results are illustrated with calculations for the case of point separations in the direction perpen-
dicular to the interface. For the incident plus reflected field, the dependence of the complex-valued and
inhomogeneous spatial correlation function on the permittivity, permeability, and conductivity of the medium
is determined. For the refracted field, the spatial correlation is again complex valued but homogeneous and
highly sensitive to the value of the refractive index. Based on the derived dependencies, nonlocal measurement
methods for precision characterization of electromagnetic material properties are suggested. The influence of
the directionality of incidence for electromagnetic beams is investigated. Narrowing the beam width results in
a slower decrease of the amplitude of the correlation function as a function of point separation. Previously
obtained asymptotic results for statistically homogeneous random free fields are retrieved as special cases.
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I. INTRODUCTION

By extending a series of earlier studies for homogeneous
free fields �1–5�, we recently derived and analyzed spatial
correlation functions of inhomogeneous random classical
electromagnetic �EM� fields in �6�. In that analysis, the con-
figuration consisted of a perfect electrically conducting
�PEC� infinite planar boundary, resulting in a superposition
of incident and reflected hemispherical statistically isotropic
random fields in front of the interface. Since a PEC boundary
exhibits constant, i.e., angle- and polarization-independent
reflection coefficients for both perpendicular �transverse
electric �TE�� and parallel �transverse magnetic �TM�� wave
polarizations, the reflection of a statistically isotropic inci-
dent field exhibits an isotropic angular spectrum as well. On
the other hand, the spatial correlation of the incident plus
reflected fields was found to be inhomogeneous �i.e., depen-
dent on the absolute distance of either one of the two point
locations with respect to the interface�, as a consequence of
the statistical field anisotropy imposed by the EM boundary
condition at the interface. First-order statistics �probability
distributions� of the energy density for this configuration
were derived in �7�, which were also found to exhibit inho-
mogeneity through action at a distance.

In this paper, we extend this previous study by consider-
ing spatial correlation functions for EM fields in the presence
of a semi-infinite isotropic medium, as a second canonical
configuration of fundamental interest. The impedance bound-
ary condition causes the reflection and transmission coeffi-
cients to depend on both the polarization state �TE, TM, or
hybrid� and the angle of incidence. As a result, the angular
spectra of both the reflected and refracted fields are now no
longer hemispherically isotropic, but are nonuniformly
weighted across the solid angle of incidence. Second, we

investigate the influence of directional incidence �sectorial
solid angle of incidence centered around a central direction�,
including narrow EM beams as a limiting case.

The present analysis and results are relevant to several
practical problems of interest, e.g., coherence properties of
stellar light transmitted through an atmosphere or inside op-
tical instruments, radio waves reflected by the Earth’s soil or
ionosphere, multipath scattering by man-made objects or
precipitation, multimode cavities, etc. The field coherency,
which is the basic EM quantity in such scenarios, is ex-
pressed in terms of reflection and transmission coefficients
for plane waves impinging onto a single planar interface. By
extension, results more general multilayer configurations are
obtained without difficulty, by simply substituting the
Fresnel coefficients for a semi-infinite medium with corre-
sponding expressions for stratified media.

II. THEORY

A. Reflected plus incident fields

Consider a semi-infinite isotropic medium with scalar per-
mittivity �=�r�0, permeability �=�r�0, conductivity �, and
first-order surface impedance �=�� /�=�0

��r /�r, where
�arg��� � �� /4. This medium occupies the half-space z�0
�Fig. 1�. We assume a time-harmonic random incident field
�Ei ,Hi�, which can be expanded as an isotropic angular spec-
trum of plane waves, each specified by a triplet �Ei ,Hi ,ki�
and propagating toward the interface, i.e., ki ·1z�0, where
�ki � �k0=	��0�0 is the �constant� free-space wave number
of each incident plane wave. A harmonic time dependence
exp�j	t� is assumed and suppressed. The overall incident
electric field Ei at r=ri can then be represented as

Ei�ri� =
1

2�
	 	


0

Ei�
�exp�− jki · ri�d
 . �1�
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The integral �1� is valid for inhomogeneous random fields
and hence applicable to the present configuration, unlike ho-
mogeneous random fields, which strictly require a Fourier-
Stieltjes representation incorporating generalized fields �dis-
tributions�. Incidence and refraction of the plane waves in the
upper and lower hemispheres 
0 and 
 is governed by
angles �0 and �, respectively, for their propagation direction
relative to the surface normal. The wave number within the
refracting medium is �kt � �k=	���=k0

��r�r. The re-
fracted electric field E�r� is expanded in a similar way as �1�,
mutatis mutandis.

For a general stratified multilayered medium, including
the particular case of a semi-infinite isotropic medium, TE
and TM waves constitute a set of uncoupled eigenmodes.
Hence, their contributions to the resultant field can be evalu-
ated separately and then superimposed, at any location. We
refer to Secs. II and III of �6� for notations and detailed
calculations of the TE/TM decomposition of a random field
with respect to the surface normal. For an isotropic semi-
infinite medium and TE polarization, the resultant �i.e., inci-
dent plus reflected� field at r0�x0 ,y0 ,z0� within the local
plane of incidence �=�0 is

Eyexp�− jk · r0� = Ey0
exp�− jk0�0 sin �0�


 
�1 + ����0�� cos�k0z0 cos �0�

+ j�1 − ����0�� sin�k0z0 cos �0�� , �2�

Hxexp�− jk · r0� =
Ey0

�0
cos �0 exp�− jk0�0 sin �0�


 
�1 − ����0�� cos�k0z0 cos �0�

+ j�1 + ����0�� sin�k0z0 cos �0�� , �3�

Hzexp�− jk · r0� =
Ey0

�0
sin �0 exp�− jk0�0 sin �0�



�1 + ����0�� cos�k0z0 cos �0�

+ j�1 − ����0�� sin�k0z0 cos �0�� , �4�

where �0=x0 cos �0+y0 sin �0, Ey0
=E�0

cos �0+E�0
cos �0


sin �0, E�0
=E0 cos �0, E�0

=−E0 sin �0, in which the ran-
dom polarization angle �0 is uniformly distributed within
the local transverse plane spanned by 1�0

and 1�0
. In �2�–�4�,

k=ki when k ·1z�0 whereas k=kr= �I=−21z1z� ·ki for k ·1z

�0. The Fresnel TE reflection coefficient is

����0� =
�ku − �0

�k2 − k0
2 + k0

2u2

�ku + �0
�k2 − k0

2 + k0
2u2

, �5�

in which u�cos �0, where � denotes a definition. Compar-
ing �2�–�4� to �4�–�5� in �6�, it follows that the z dependence
of the resultant field is no longer spatially harmonic when
0�����0�� ±1, unlike in the case of a PEC surface. Simi-
larly, for the wave components that are TM with respect to
the plane of incidence, we have

Hyexp�− jk · r0� = − Hy0
exp�− jk0�0 sin �0�



�1 − ����0��cos�k0z0 cos �0�

+ j�1 + ����0��sin�k0z0 cos �0�� , �6�

Exexp�− jk · r0� = �0Hy0
cos �0exp�− jk0�0 sin �0�



�1 + ����0��cos�k0z0 cos �0�

+ j�1 − ����0��sin�k0z0 cos �0�� , �7�

Ezexp�− jk · r0� = �0Hy0
sin �0exp�− jk0�0 sin �0�



�1 − ����0��cos�k0z0 cos �0�

+ j�1 + ����0��sin�k0z0 cos �0�� �8�

with Hy0
=H�0

cos �0+H�0
cos �0 sin �0, H�0

=H0 sin �0,
H�0

=H0 cos �0, H0=E0 /�0, and Fresnel TM reflection coef-
ficient

����0� =
��k2 − k0

2 + k0
2u2 − �0ku

��k2 − k0
2 + k0

2u2 + �0ku
. �9�

While we shall limit the further analysis to point separations
in normal direction ��r1r=�z1z�, the results are easily ex-
tended to arbitrary directions using the methodology outlined
in Sec. IV of �6�.

For the TE waves, substitution of �2� into �1�, evaluated
at two locations r1,2=z1,21z for r0, enables the calculation
of Ey�r1� ·Ey

*�r2� via double integration with respect to
corresponding ranges 
1 and 
2 �cf. Eq. �16� in
Ref. �6��, where the asterisk denotes complex conjugation.
This is followed by ensemble averaging of this product,
assuming �-correlated random field components �cf. Eq. �17�
in Ref. �6��, i.e., �E1�
1� ·E2

*�
2�
 � �E1��
1� ·E2�
* �
2�


+�E1��
1� ·E2�
* �
2�
=2C���
1�
2� \ �
1�
2��, where C

� ��E0�2
 /4. If, in addition, each complex Cartesian compo-
nent exhibits a zero mean value, then these impositions on
the first- and second-order moments define, unambiguously,
a three-dimensional complex �six-dimensional real� multi-
variate Gauss normal distribution with independent and iden-

FIG. 1. Coordinate system and local plane of incidence ��0=0,
1�0

=1y� for single TE wave component reflected and refracted by a
semi-infinite isotropic medium.
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tically distributed components Ei�. The results also apply to
more general distributions for E1,2, provided that their first-
and second-order moments satisfy the stated expressions. It
follows that for a general isotropic impedance boundary con-
dition, the TE field coherency �Ey�z1�Ey

*�z2�
 can be written
as a sum of four terms, viz.,

�Ey�z1�Ey
*�z2�
 = Iy1 + Iy2 + Iy3 + Iy4 �10�

where

Iy1 = 2C	
0

1

�1 − ���u��2 sin�k0z1u� sin�k0z2u�du , �11�

Iy2 = 2C	
0

1

�1 + ���u��2 cos�k0z1u� cos�k0z2u�du , �12�

Iy3 = j2C	
0

1

�1 − ���u���1 + ��
* �u�� sin�k0z1u� cos�k0z2u�du ,

�13�

Iy4 = − j2C	
0

1

�1 + ���u���1 − ��
* �u��


cos�k0z1u� sin�k0z2u�du . �14�

Note that Iy3� Iy4
* and Im�Iy3+ Iy4��0 unless z1=z2, so that

the spatial coherencies are, in general, complex valued. The
integrals �11�–�14� evaluate to closed-form but cumbersome
expressions. Expressions for the TM coherencies follow in
an analogous manner by substituting �7� and �8� into �1�,
yielding

�Ex�z1�Ex
*�z2�
 = Ix1 + Ix2 + Ix3 + Ix4, �15�

where

Ix1 = 2C	
0

1

�1 − ���u��2u2 sin�k0z1u� sin�k0z2u�du , �16�

Ix2 = 2C	
0

1

�1 + ���u��2u2 cos�k0z1u� cos�k0z2u�du , �17�

Ix3 = j2C	
0

1

�1 − ���u���1 + ��
*�u��u2


sin�k0z1u� cos�k0z2u�du , �18�

Ix4 = − j2C	
0

1

�1 + ���u���1 − ��
*�u��u2


cos�k0z1u� sin�k0z2u�du , �19�

and

�Ez�z1�Ez
*�z2�
 = Iz1 + Iz2 + Iz3 + Iz4 �20�

where

Iz1 = 2C	
0

1

�1 + ���u��2�1 − u2� sin�k0z1u� sin�k0z2u�du ,

�21�

Iz2 = 2C	
0

1

�1 − ���u��2�1 − u2� cos�k0z1u� cos�k0z2u�du ,

�22�

Iz3 = j2C	
0

1

�1 + ���u���1 − ��
*�u���1 − u2�


sin�k0z1u� cos�k0z2u�du , �23�

Iz4 = − j2C	
0

1

�1 − ���u���1 + ��
*�u���1 − u2�


cos�k0z1u� sin�k0z2u�du . �24�

For the normal field Ez=Ez1z, the tangential field Et=Ex1x
+Ey1y, and the total, i.e., vector field E=Ex1x+Ey1y +Ez1z,
we have

�Ez�z1�Ez
*�z2�
 = �

�=1

4

Iz�, �25�

�Et�z1�Et
*�z2�
 = �

�=x,y
�
�=1

4

I��, �26�

�E�z1�E*�z2�
 = �
�=x,y,z

�
�=1

4

I��. �27�

B. Refracted fields

For the field transmitted �refracted� across the inter-
face, we obtain in an analogous manner, with the aid of
the field transmission coefficients T�,���0� and Snell’s law
k0 sin �0=k sin �,

�Ey�z1�Ey
*�z2�


= 2C	
0

1

�T��u��2exp� jk0�z1 − z2��� k

k0
�2

− 1 + u2�du ,

�28�

�Ex�z1�Ex
*�z2�


= 2C	
0

1

�T��u��2�1 − � k0

k
�2

+ � k0

k
�2

u2�

exp� jk0�z1 − z2��� k

k0
�2

− 1 + u2�du , �29�
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�Ez�z1�Ez
*�z2�
 = 2C	

0

1

�T��u��2� k0

k
�2

�1 − u2�


exp� jk0�z1 − z2��� k

k0
�2

− 1 + u2�du , �30�

where the Fresnel TE and TM transmission coefficients are

T��u� = 1 + ���u� =
2�ku

�ku + �0
�k2 − k0

2 + k0
2u2

, �31�

T��u� =
cos �0

cos �
�1 + ���u�� =

2�ku

�0ku + ��k2 − k0
2 + k0

2u2
,

�32�

respectively. The coherencies now exhibit complex-harmonic
dependencies on the separation distance only, as in the case
of free random fields in an infinite homogeneous medium.
Thus, unlike for the incident plus reflected field, the spatial
correlation of the refracted field is homogeneous, i.e., depen-
dent on k�z=k �z1−z2� only. Physically, this is a consequence
of the fact that no interference exists beyond the interface.
Nevertheless, because of the �0-dependence of T�,�, the co-
herency of the refracted field is different from that of the
incident field.

III. NUMERICAL RESULTS

A. Good conductor

For good but imperfect nonmagnetic conductors
���	�0, �=�0, �=�0�, we can approximate � /�0

��	�0 / �2���1± j� and ��0. The reflection coefficients
then become

���u� �
�u − �0

�u + �0
, ���u� �

� − �0u

� + �0u
. �33�

Upon substituting these expressions into �11�–�14�,
�16�–�19�, and �21�–�24�, followed by a transition to the limit
� / �	�0�→ +�, it is verified that for a PEC surface only the
terms I�1 in �25�–�27� are nonzero, for either polarization.

Figure 2 compares the spatial correlation function �SCF�
of the normal component of the incident plus reflected elec-
tric field, defined by

�Ez
�k0�z;k0z0� �

�Ez�k0z0�Ez
*�k0z0 + k0�z�


���Ez�k0z0��2
��Ez�k0z0 + k0�z��2

�34�

at k0z0=� /4 for selected values of � / �	�0��1 to the corre-
sponding function for a PEC surface. Finite values of
� / �	�0� are seen to cause the first zero crossing of
Re��Ez

�k0�z�� to occur at smaller values of k0�z compared to
a PEC boundary. SCFs for Et and E �Figs. 3 and 4� show that
corresponding differences for Re��E�t�

�k0�z�� between fi-

nitely conducting and PEC surfaces are less pronounced than
for Ez. Compared to a PEC surface, the damping of
Re��Et

�k0�z�� is qualitatively different from that for
Re��Ez

�k0�z��. Also, finite conductivities yield nonvanishing
imaginary parts of the SCF, indicating that E�k0z0� and
E*�k0z0+k0�z� or their components are, on average, no
longer in phase. This effect can be exploited as a means to
measure surface conductivity.

FIG. 2. SCF of the incident
plus reflected normal field Ez for
selected values of � / �	�0� at
k0z0=� /4 as a function of separa-
tion k0�z in normal direction.
Curves originating at ordinate
value 1 represent Re��Ez

�k0�z��;
curves originating at ordinate
value 0 represent Im��Ez

�k0�z��.
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B. Lossless isotropic dielectric medium

As a second special case, we analyze the effect of the
permittivity of a lossless isotropic dielectric medium on the
SCF. For brevity, we now limit the presentation to results for
the amplitude of the vector field E only.

For the refracted field, Fig. 5 shows that the permittivity
manifests itself by a decrease of the first zero crossing dis-
tance �correlation length� for Re��E�k0�z��, with associated
shifts of the local maximum and minimum values toward
lower values of k0�z. Also, the amplitudes of Re��E�k0�z��
and Im��E�k0�z�� increase with increasing � /�0. Similar

FIG. 3. SCF of the incident
plus reflected tangential field Et

for selected values of � / �	�0� at
k0z0=� /4 as a function of separa-
tion k0�z in normal direction.
Curves originating at ordinate
value 1 represent Re��Et

�k0�z��;
curves originating at ordinate
value 0 represent Im��Et

�k0�z��.

FIG. 4. SCF of the incident
plus reflected total �vector� field E
for selected values of � / �	�0� at
k0z0=� /4 as a function of separa-
tion k0�z in normal direction.
Curves originating at ordinate
value 1 represent Re��E�k0�z��;
curves originating at ordinate
value 0 represent Im��E�k0�z��.
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findings apply to �Ez
�k0�z� and �Et

�k0�z� �not shown�.
The high sensitivity of �E�k0�z� to the value of � /�0, in
combination with its insensitivity to k0z0, suggest that
measurements of �E�k0�z� may be used as a precision
method for determining the refractive index of a transparent
substance.

For the incident plus reflected field, Fig. 6 shows
�E�k0�z ;k0z0� in the half-space of incidence at k0z0=� /4,
for selected values of �r�� /�0. Comparing the asymptotic
curve for �r→ +� to Fig. 4 for a PEC surface, it is noted that
�E�k0�z� is qualitatively similar, but quantitative differences
exist, particularly for k0�z�1. Thus, the SCF for the re-

FIG. 5. SCF of the refracted
vector field E for selected values
of �r=� /�0 at arbitrary k0z0 as a
function of separation k0�z in
normal direction. Curves originat-
ing at ordinate value 1 represent
Re��E�k0�z��; curves originating
at ordinate value 0 represent
Im��E�k0�z��.

FIG. 6. SCF of incident
plus reflected vector field E
for selected values of �r=� /�0 at
k0z0=� /4 as a function of separa-
tion k0�z. Curves originating at
ordinate value 1 represent
Re��E�k0�z��; curves originating
at ordinate value 0 represent
Im��E�k0�z��.
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flected field can be used to distinguish between conducting
and high-permittivity media, both of which exhibit high re-
flectivities making them otherwise difficult to discern in sca-
lar local measurements.

C. Directional incidence

Thus far, the direction of incidence ��0 ,�0� of the random
field onto the interface was assumed to be uniform within the
upper hemisphere �
0=2� sr, viz., −� /2��0�� /2, 0
��0���. In practice, particularly in millimeter-wave and
optical regimes, the wave vectors of the incident EM beams
are often confined to be within a narrower solid angle �0
−��0��0��0+��0, �0−��0��0��0+��0 and scaled
by 2��0 /� in azimuthal direction. For ��0 ,��0→0, this
approaches an unpolarized EM beam incident along the
��0 ,�0� direction.

The spatial coherence along the reflected or refracted
beam can be calculated as before, on replacing the inte-
grations �0

1 . . .du for the angular spectral averages by
�cos���0�

1 . . .du. Along the direction of specular reflection,
−�0, the tangential and normal point separations are related
by �x /�z=tan �0���1/u�2−1; along the direction of
refraction, �, their ratio is �x /�z=−tan ��−�1−u2 /
��k /k0�2−1+u2. In general, narrow incident and reflected
beam fields do not interfere unless incidence is sufficiently
close �with respect to the beam width� to the surface normal,
where the solid angles of the incident and reflected waves
overlap partially or completely.

To illustrate the effect of directionality of incidence on the
SCF, we consider an incident random field represented by an
angular spectrum of elevational width �field of view� 2��0
centered around the normal direction ��0=0� with preserva-

tion of the azimuthal symmetry around this direction ���0

=�� and random polarization �0��0�2��. This corre-
sponds to incidence from within a solid angle 2���0 sr. For
a PEC surface, Fig. 7 shows �E�k0�z� at selected values of
��0 for k0z0→ +�. It can be verified that for k0z0→ +�,

�E�k0�z;��0 → 0� → �Et
�k0�z;��0 → 0� = cos�k0�z� .

�35�

On the other hand, for k0z0→0,

�E�k0�z;��0 → 0� → �Et
�k0�z;��0 → 0� = sgn�cos�k0�z�� .

�36�

Figure 8 shows corresponding results for refraction by an
isotropic dielectric medium with � /�0=2, demonstrating
qualitatively similar features for both Re��E�k0�z�� and
Im��E�k0�z��, with �E�k0�z�→exp�−jk0

��r�z� for ��0→0.
In general, a medium with larger �r yields more rapidly
modulated oscillations of its SCF.

Corresponding functions for the incident plus reflected
field at k0z0=� /4 are shown in Fig. 9. A general feature is
that the oscillations of the SCF become less regular when
k0z0 decreases for a given value ��0, or vice versa; see, for
example, the plot of �E�k0�z� for ��0=1° in Fig. 9. In the
limit k0z0→0, the SCF tends again to the complex-harmonic
square-wave function sgn�exp�−jk0�z��.

IV. CONCLUSION

The reflection and transmission properties of an isotropic
magnetodielectric medium have been shown to have a sig-
nificant effect on the spatial correlation functions of normal,

FIG. 7. SCF of incident plus
reflected vector field E in normal
direction in front of a PEC sur-
face, at selected values of ��0 for
k0z0→ +� as a function of sepa-
ration k0�z.
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tangential, and total EM random vector fields, as a conse-
quence of the EM boundary conditions. An analysis of the
corresponding effects on the probability distribution of the
energy density of the total field for this configuration will be
presented in a forthcoming paper.

The effect of changes in the constitutive parameters on the
correlation length is, in general, ambiguous, because a de

creasing first-zero crossing distance of the SCF is usually
accompanied by an increase in its amplitude, ��E�k0�z��, so
that, e.g., the two definitions investigated in Sec. V of �6�
yield diverging tendencies for such changes.

Since the above formulation is in terms of TE and TM
reflection and transmission coefficients for plane waves, the
analysis can be extended without effort to investigate the

FIG. 8. SCF of refracted
vector field E at selected values
of ��0 with � /�0=2 as a function
of separation k0�z in normal
direction. Curves originating
at ordinate value 1 represent
Re��E�k0�z��; curves originating
at ordinate value 0 represent
Im��E�k0�z��.

FIG. 9. SCF of incident plus
reflected vector field E at selected
values of ��0 with k0z0=� /4 and
� /�0=2 as a function of separation
k0�z in normal direction. Curves
originating at ordinate value 1
represent Re��E�k0�z��; curves
originating at ordinate value 0
represent Im��E�k0�z��.
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SCF for more general stratified configurations with un-
coupled eigenpolarizations of this kind, e.g., multilayered
stratified media as well as uniaxial anisotropic media,
by substituting the appropriate functional forms of these
coefficients.
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